
1

Component-plus-Strategy generalizes Ports-and-Adapters
Alistair Cockburn
Humans and Technology Technical Report 2022.01 (v3a, 2023-06-01)
© Alistair Cockburn, 2022 all rights reserved

Component + Strategy allows you to configure a subsystem to fit into slightly different
environments. Hexagonal Architecture aka Ports & Adapters is a specific version of it that
allows you to isolate a system from external technologies, vary those external technologies,
and test the system in isolation from those technologies.

Table of Contents:

1 - Warmup
2 - Introducing components and ports
3 - Strategy, Adapter, or both?
4 - Component + Strategy : The pattern
5 - Ports & Adapters (Hexagonal Architecture) revisited
6 - The Hidden Fourth Object: the Configurator
7 - Tests or no tests?
8 - End Notes

2

1. Warmup:

You quite naturally pass an object into a function so that the function can ask that object for
more information or tell it to do something. This is normal object-oriented design.

For example, suppose you are programming a coffee machine that operates from recipes,
you might pass in a recipe object to the drink-maker, so that the drink maker can get from it
the sequence of ingredients to dispense.

Your code would look something like:

 recipe = RecipeLibrary.find("mochaccino");
 drinkmaker.make(recipe)

and inside the drinkmaker:

 foreach step in recipe {
 dispenser = step.ingredient
 quantity - step.quantity
 dispenser.dispense(quantity)
 }

Figure 1: The inevitable coffee machine

Although this is all really normal, it turns out to be quite subtle. It has been written about a
lot, and given lots of fancy names.

First of all, we have parameterized the recipes, meaning, we choose which one to use
according to the argument we pass in to the function. This is a really basic way to program,
and should be fairly understandable. The main reason I mention it is that I want to be able
to say in a bit: "parameterize the secondary actors." All I mean with that is that you pass in
an argument that identifies which one to use.

It turns out we have just implemented the Strategy pattern. Many programmers don't use
Strategy consciously, because it seems complicated in the Design Patterns book. So
although they might use it reflexively, they don't describe their designs this way.

3

The Strategy pattern, very briefly, looks like this:

Figure 2: The Strategy pattern

The Strategy pattern only says that an object ("Context" here) has in its hands one of a set
of possible objects that all respond to the same function call. Pretty ordinary polymorphism
going on there.

In this drawing, the diagram shows the concrete strategies as subclasses of the top strategy
class. But that only is needed in some languages. In languages such as Ruby, Smalltalk, and
others, the concrete strategies only have to meet the function call interface, there is no
need for an abstract superclass over them. This becomes important later.

What's cool about Strategy is that that polymorphism not only saves a bunch of 'if'
statements, but the Context doesn't know or care which it has at the time of the call.

• Context may have calculated which one it needed earlier - for example, it may earlier
have decided to use a time-optimal search or a space-optimal search, and obtained
the appropriate search algorithm from somewhere, stuffed that search algorithm
object into a safe place, and when needed, invoked whatever it had stored away.

• Or, the Context object might never know which concrete strategy object it is calling.
Something, somewhere else, made that decision, and passed it in as a parameter.
This is what we did with the recipe object.

The Strategy pattern doesn't tell us how the concrete strategy got loaded into the Context
object. That is outside the scope of the pattern. As we discuss patterns in this article, we will
pay attention to this - what does the pattern legislate versus which is outside the scope of
the pattern.

Thirdly, we have just used what is known in UML as a Required Interface. The drinkmaker
declares what calls it will make to its argument-collaborators, and they have to implement
that. This is exactly what the Strategy pattern shows, above, although it is not evident to the
casual reader that that is what is going on.

4

But we're not done with the example, yet. It also turns out that we have implemented the
Dependency Injection pattern, one of the implementation possibilities of Configurable
Receiver [https://alistaircockburn.com/Articles/Configurable-Receiver].

Wait! What?!

Let's draw a picture of the drinkmaker using UML notation.

Figure 3: The drinkmaker example
(Image courtesy of Juan Manuel Garrido de Paz)

The simple arrowheads show a calling, or uses relation of the driver to the drinkmaker. The
driver selects the recipe and passes it to the drinkmaker using what UML calls the
drinkmaker's Provided Interface.

The open triangle shows an implements relation. Each recipe must implement the Required
Interface of the drinkmaker. These are the same two arrowheads as in the Strategy
diagram, except that the Strategy diagram does not show an outer driver calling the Context

object, because that is out of scope of the pattern.

Because driver passes the recipe into the drinkmaker, the drinkmaker knows nothing about
those other objects at programming time. It has no code-level dependencies on them. All
knowledge it needs it obtains as needed during program execution. We like this, from a
maintenance, testing, and reuse perspective.

To end this warmup section, what I am wanting to show here is how normal it is to pass an
object as an argument to a function for further investigation, and how that simple act
implements all of: parameterized collaborator, Configurable Receiver, Dependency
Injection, Strategy and Required Interface. That's a lot of buzzwords for a fairly normal
design practice

* * * * *

5

2. Introducing components and ports

I only just discovered in 2022(!) that UML contains a thing called Component, which has a
Provided Interface or API on the driver side, and a Required Interface on the collaborator
side. Further, Component has a thing called a Port, which is just a requirement that
anything that plugs into the component must honor a protocol.

The UML spec says a Component is, "a modular unit with well-defined Interfaces that is
replaceable within its environment".

"A Component specifies a formal contract of the services that it provides to its
clients and those that it requires from other Components or services in the system
in terms of its provided and required Interfaces.”

Here is the UML picture for a component

Figure 4: A UML Component with Provided and Required interfaces

A key property of components that is relevant to this article is that they can be nested -
components inside of components - at any number of levels. This allows you to construct
subsystems out of individual components and other subsystems. When we compare this to
the Ports & Adapters or Hexagonal Architecture pattern, which doesn't nest, we will see this
as a key difference between the two.

6

Figure 5: Components can be nested
(Image courtesy of Juan Manuel Garrido de Paz)

(formerly: https://www.uml-diagrams.org/component-diagrams/component-diagram-overview.png

Finally, we must note that we have shifted from a pure modeling discussion to one that
includes packaging. The packaging is conceptual at the first hand, because we are asserting
that a collection of things has a boundary and specified set of ways to interact with it. It may
also be physical, in terms of being a stored or deployable unit.

What we're going to do now is a bit usual, we're going to blend a packaging discussion with
a modeling discussion into one pattern. We are going to configure our Component with a
Strategy

But first we have to ask: Strategy? or Adapter?

* * * * *

7

3. Strategy, Adapter, or both?

The Adapter pattern is a special case of the Strategy pattern in which the concrete strategy
will make some adjustments for interface compatibility and then call another service to take
care of the request. The big difference between the two is that Adapter has an additional
level of indirection. The strategy may or may not do all its work itself, but we intend the
adapter to connect to something else.

A Strategy object can, of course, do all this - that is outside the pattern definition - but we
expect the Adapter to do this.

Now, I know the names are different, but for a moment I just want to look at the structure
of the code, because we'll make use of that.

Figure 6: The Strategy pattern again

Figure 7: The Adapter pattern

http://www.w3sdesign.com/GoF_Design_Patterns_Reference0100.pdf

You might notice that in the diagrams, the Adapter picture only shows one adapter, where
the Strategy picture shows several, we imagine swappable, concrete strategies. But this is

8

only in the drawing. In ordinary working, we are quite likely to send a message out to a web
channel, a text message, or something else, and vary that during program execution. So,
there are just as likely to be several concrete adapters classes that get called and swapped
at program configuration time or run time.

Where this similarity between the patterns this becomes useful is that you can combine
Strategies and Adapters. The following example from shows them together. The first
indicated strategy might do all the work itself, the second uses a third object to complete
the work.

Figure 8: Using Strategy and Adapter together

http://www.w3sdesign.com/GoF_Design_Patterns_Reference0100.pdf

We will make use of this combined pattern in testing our component.

For the above reasons, I call the pattern in this article Component + Strategy. I will specialize
it to the Ports & Adapters or Hexagonal Architecture pattern.

* * * * *

9

4. Component + Strategy : The pattern

Component + Strategy allows you to configure a subsystem to fit into slightly different
environments.

Because we have a packaging element connected to a modeling element, I show the pattern
in two diagrams, a component diagram with an object hanging off it, and a class diagram
showing the component as a single class, even though it probably consists of many.

First, just to get us used to looking at them, here is the Strategy pattern shown as a

component diagram.

Figure 9: Strategy as a component diagram

(Image courtesy of Juan Manuel Garrido de Paz)

Next, here is Component + Strategy as a component diagram:

Figure 10: Component + Strategy as a component diagram

(Image courtesy of Juan Manuel Garrido de Paz)

Finally, here is Component + Strategy as a class diagram

10

Figure 11: Component + Strategy as a class diagram

(Image courtesy of Juan Manuel Garrido de Paz)

One of the benefits of using Component + Strategy is that by declaring the component
boundary explicitly, you can supply a test double as the strategy for one of external actors
and thus test the component in isolation. Then for production use, supply an adapter to do
the real connection.

And now our Strategy-Adapter discussion becomes relevant. The test double might not be
connected to a test database. If it is not, then the test double fits the definition of a Strategy
object, as we discussed above. If it is connected to a test database, then it is arguably an

adapter. Personally, I am not fussed which way you call it, I don't consider that argument
worth the time fighting over it. I am only going into this detail here because this is the
pattern definition, and I would like to be as accurate as possible with the terms.

In the end, I am choosing the name Component + Strategy instead of Component + Adapter
because Strategy is the more general of the two.

* * * * *

11

5. Ports & Adapters (Hexagonal Architecture) revisited

Figure 12: Ports & Adapters aka Hexagonal Architecture

Given the above, we can now see that the Ports & Adapters also known as Hexagonal
architecture is a specific use of Component + Strategy where the component boundary is
placed just in front of external technologies. Adapter objects are supplied for each port to
adjust to the Provided Interface or Required Interface of the component.

• In the case of direct module-to-module interaction where the interfaces are
compatible, no adapter may be needed.

Figure 13: Apps interacting with and without needing adapters

(Image courtesy of Juan Manuel Garrido de Paz)

• In testing, test doubles may be either Strategy or Adapter objects.

12

Figure 14: Ports & Adapters as component diagram showing test double
(Image courtesy of Juan Manuel Garrido de Paz)

One of the differences between the two patterns is that a key intention of Ports & Adapters
is to protect against external technology changes. Hence, its boundary is placed only at the
technology boundary. It is not nestable, unlike Component + Strategy, which is designed to
be nested.

13

Figure 15: Components within Ports & Adapters
(Image courtesy of Juan Manuel Garrido de Paz)

Testing should be the same for Ports & Adapters as for Component + Strategy. Place a test
driver or test double at each port to test the component in isolation.

For the definition of Hexagonal Architecture, see https://alistair.cockburn.us/hexagonal-
architecture/

 * * * * *

14

6. The Hidden Fourth Object, the Configurator

All of the preceding diagrams and discussions skipped over an important question:

How do all these objects come to know of each other?

The Strategy diagram doesn't show how the Context object came to know which concrete
strategy to use. That is outside the scope of the pattern. The same is true for both
Component + Strategy and Ports & Adapters.

However, sooner or later there has to be some module or code that knows all the players
and introduces them to each other. That's where source-code dependencies lie. This is the
Configurator object. There are a few other solutions, but this one is the most common.

Figure 16: The Configurator sets up the knowledge paths
(Image courtesy of Juan Manuel Garrido de Paz)

When you test at the system level, there is no UI and there are no databases. You have a
test harness driving the Provided Interface, and a test double handling the requests at
the Required Interface.
You write a module where you instantiate all three of them: the test harness, the test
double, and the component, you tell the test harness to use the component, and send
the test double in to the component as the concrete strategy at the Required Interface.
Then you tell the test harness to go, and it all runs.

15

In early stages of development, each test case does all that wiring and then runs the
specific test. Here, the configurator is inside each test case.

Then, for production use, all those same instantiations take place in the program build
and startup. The startup module will instantiate the component, the UI, and the
adapters to the relevant databases and other actors. Depending on your design, the
configurator may pass in the strategy objects to the component or that may be the
assignment for the UI or another module. In all cases, the configurator knows all the
players and what they need.

Because the Configurator is outside the pattern definition - exactly how and where all
that knowledge acquisition happens - we generally don't see the Configurator getting
talked about. In order to make the patterns useful, though, we need to make it explicit.

For completeness, Juan Manuel Garrido de Paz was kind enough to contribute this

Spring code that illustrates:

@Configuration
public class SpringDiscounterAppConfigurator {

 @Bean
 @ConditionalOnProperty(name = "for-managing-discounts", havingValue
= "test-cases")
 public Driver testCasesDriver (ForDiscounting discounterApp) {
 return new TestCases(discounterApp);
 }

 @Bean
 @ConditionalOnProperty(name = "for-managing-discounts", havingValue
= "cli")
 public Driver cliDriver (ForDiscounting discounterApp) {
 return new Console(discounterApp);
 }

 @Bean
 public ForDiscounting discounterApp (ForObtainingRates rateRepository)
{
 return new DiscounterApp (rateRepository);
 }

 @Bean
 @ConditionalOnProperty(name = "for-obtaining-rates", havingValue =
"test-double")
 public ForObtainingRates testDoubleRateRepository() {
 return new StubRateRepository();
 }

 @Bean

16

 @ConditionalOnProperty(name = "for-obtaining-rates", havingValue =
"file")
 public ForObtainingRates fileRateRepository() {
 return new FileRateRepository();
 }

}

* * * * *

17

7. Tests or no tests?

One of the things that makes my blood freeze when seeing people claim they have
implemented Ports & Adapters or Hexagonal Architecture is the absence of tests on both
sides.

If you place hexagons everywhere, at different levels inside the system, then there will be
too much repetition between the hexagon boundary tests and the system tests. Not being
worth the time to write and maintain both, the team will likely stop writing tests for the
inner hexagons, at which point it ceases to be a real Component.

One reason I like UML's Component is that simply by using the word 'component', you
should feel obligated to write tests at all of the boundaries. I mean, it is called a
"component" after all, and is intended to be placed in different systems and circumstances.
Of course there should be tests at the declared boundaries.

Perhaps because the Ports & Adapters Architecture pattern never explicitly says it is a
component, people think of it only as a conceptual interface, a "nice thought", but not really
something to write tests at.

My hope is that by writing Component + Strategy, and then making it clear that Ports &
Adapters is a special case of that general pattern, people will start to treat these boundaries
as real system boundaries, and hence worth the trouble of writing tests to.

It is for this reason that I am adamant that Ports & Adapters aka Hexagonal Architecture is
placed at the outer, technology boundary. At that interface, the tests are meaningful system
tests, worth maintaining. The application becomes a component in the sense we intend, and
gets its proper regression tests.

* * * * *

18

8. End Notes

The point of the opening example was to show how simple and ordinary our design was. We
simply parameterized an external resource, then passed in an object that let us get the
appropriate one at run time.

The difference between Component + Strategy and Ports & Adapters or Hexagonal
Architecture is that Ports & Adapters is aimed at solving one very specific problem -
changing external technologies (and testing) - whereas Component + Strategy is intended as
a general subsystem-bounding effort.

I would like to see increased use of Component + Strategy as a packaging concept that
allows arbitrary sub-sections of code to be protected by a test wall and configured to their
environments.

Alistair Cockburn
Humans and Technology Technical Report 2022.01
© Alistair Cockburn, 2023 all rights reserved

